Michigan State University

AgBio**Research**

Evaluation of in-furrow and banded fungicides treatments to manage Rhizoctonia root and crown rot of sugar beet

Jaime Willbur and Chris Bloomingdale, Michigan State University

Location: Frankenmuth (SVREC)	Treatment Timings: In-Furrow & Banded at 6-8 leaves
Planting Dates: April 26, 2018	Pesticides: see table
Soil Type: Loam	O.M.: 5.0 pH: 7.5
Replicates: 4	Variety: C-G351NT

Table 1. Disease index (root rating at harvest), seasonal plant loss, and yield parameters of fungicide programs.

No.	Treatment, Rate/A	Application Type	Disease Index (%) ^{a,b}	Total Plant Loss (%)	Yield (t/A)	Sugar (%)	RWST
1	Serenade ASO 2 qt	In-Furrow,	16.1 c	17.3 d	13.9 a	12.7	171.3
	Quadris 13.9 fl oz	In-Furrow,					
	Proline 480SC 5.7 oz	Banded					
2	Experimental 12.8 fl oz	In-Furrow,	29.8 bc	23.0 cd	10.5 ab	12.8	173.9
	Quadris 13.9 fl oz	In-Furrow,					
	Proline 480SC 5.7 fl oz	Banded					
3	Proline 480SC 5.7 fl oz	In-Furrow,	31.2 bc	29.5 b-d	8.5 b	13.1	179.3
	Quadris 13.9 fl oz	In-Furrow					
4	Serenade ASO 2 qt	In-Furrow,	39.0 b	30.3 bc	8.9 b	12.7	172.0
	Propulse 10 fl oz	In-Furrow,					
	Quadris 13.9 fl oz	Banded					
5	Serenade ASO 2 qt	In-Furrow,	41.4 b	35.5 bc	9.6 ab	12.6	169.4
	Proline 480SC 5.7 fl oz	In-Furrow,					
	Quadris 13.9 fl oz	Banded					
6	Quadris 13.9 fl oz	In-Furrow	45.5 b	27.3 cd	7.2 bc	12.5	168.8
7	Propulse 10 fl oz	In-Furrow	45.9 b	41.3 b	5.7 bc	12.9	176.4
8	Non-Treated Control	N/A	77.7 a	71.8 a	1.7 c	12.6	170.9

^a Column values followed by the same letter are not significantly different based on Fisher's Protected LSD (α =0.05); if no letter, then the effect is not significant.

^b Disease index was calculated by multiplying the disease incidence (0-100%) by the mean symptomatic root severity (1-7) and dividing by 7.

Summary: Mean disease index values were significantly different among treatments (P<0.01), with all treatments exhibiting significantly lower levels of root infection than the non-treated control plot. The lowest disease ratings were observed in treatments 1, 2, and 3, with an index ranging between 16.1% and 31.2%. The percent of plants lost during the season was significantly different among treatments (P<0.0001); the non-treated control had significantly greater losses than other plots, with a mean loss of 71.8%. Treatments with the lowest levels of loss included 1, 2, 3, and 6, with values between 16.1% and 29.5%. Despite having overall low yield values, there were significant differences among treatments (P<0.05). Treatment 1 provided the greatest mean yield, 13.9 t/A; treatments 2 and 5 performed similarly. The lowest mean yield was obtained in non-treated plots, which did not differ from treatments 6 or 7. The range of mean yields for these treatments was 1.7-7.2 t/A. There were no differences in percent sugar or RWST values among the tested treatments (P<0.05). To prevent residual foliar fungicide effect on Rhizoctonia infection, no foliar leaf spot management was conducted; this, combined with the severe Rhizoctonia root rot, may account for the low yield parameters observed in this trial. Taking this into consideration, program 1 performed overall better than the other programs in this study.